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Abstract. We investigate the electronic structure of In1−xGaxAs/GaAs strained quantum wells
and the effects ofδ-doping on the density of states, effective mass, and transition energies via
an exact treatment of the Pikus–Bir Hamiltonian. As the carrier density of theδ-doped layer
increases, both the conduction and valence subbands exhibit decreasing behaviour, while the
density of states and the effective masses are little affected byδ-doping. In this case, since the
valence subbands decrease more rapidly with doping concentration, the energies of the transitions
from the first valence subband to the conduction states are found to increase.

In1−xGaxAs/GaAs strained layer quantum wells have been receiving much attention because
of the scientific interest and technological applications for devices [1–3]. Since the lattice
constant of GaAs is smaller than those for In1−xGaxAs alloys, the InxGa1−xAs quantum
well is under compressive strain, which affects the band structure of this material. The
hydrostatic component of the strain increases the band gap, reducing the difference between
the band gaps of the barrier and well, whereas the shear component of the strain splits off
the degenerate valence bands at the08 point. As a consequence, the heavy-hole state is
raised while the light-hole energy state is lowered. Such a splitting of the valence bands
leads to interesting band alignments. In In1−xGaxAs/GaAs strained quantum wells, recent
experiments showed that the band offset between the heavy-hole bands forms a type-I
superlattice, while a type-II structure appears for the light-hole bands [2].

In this paper we investigate the energy dispersion, the density of states, and the effect
of δ-doping on the electronic structure in In1−xGaxAs/GaAs strained quantum wells. We
calculate the energy levels by solving the Luttinger–Kohn Hamiltonian which includes the
strain effect caused by the lattice mismatch between In1−xGaxAs and GaAs [4]. We find an
anisotropic feature in the valence subbands over thek-space, which deviates slightly from
a parabolic dispersion. The calculated density of states exhibits a staircase shape which
is typical of a two-dimensional electron system. The electronic structure of aδ-doped
quantum well is examined by treating self-consistently electron–electron interactions within
the Hartree approximation. With the increasing of free-carrier density in theδ-doped layer,
the energy separations between the conduction and valence subbands are found to increase,
while the effective masses are little affected.

In our calculations, quantum wells are modelled as a multilayered heterostructure grown
along the [001] direction, which consists of an In1−xGaxAs single quantum well and two
adjacent GaAs layers surrounded by buffer layers which are introduced for computational
convenience. Since the lattice constant of In1−xGaxAs, a(x), is larger than that of GaAs,

0953-8984/96/111705+08$19.50c© 1996 IOP Publishing Ltd 1705



1706 J H Oh et al

a0, a compressive strain on the lateral plane exists in the In1−xGaxAs well if the GaAs layer
has enough thickness to maintain its own lattice constant. Then, taking into account cubic
symmetry, the strain tensors are written as

εxx = εyy = a0 − a(x)

a0
εzz = −2

C12

C11
εxx εxy = εyz = εzx = 0 (1)

whereC11 andC12 are the elastic constants of In1−xGaxAs.
In an effective-mass theory with the energyE0 = h̄2/m0l

2
0, length l0, and free-electron

massm0 set to one, the conduction subbands are described by the Hamiltonian

Hel = kz

1

2m∗(z)
kz + k2

2m∗(z)
+ Ve(z) + C1(εxx + εyy + εzz) + Vex(z) (2)

wherek2 = k2
x + k2

y , kz = −i ∂/∂z, m∗(z) is the effective mass of an electron,C1 is the
deformation potential of the conduction band, andVex(z) is an external potential such as a
Hartree potential or electric field. To preserve the flux conservation of wave functions at
interfaces, we employ the kinetic energy operator suggested by Ben Daniel and Duke [5].
Neglecting strain effects, the confinement potentialVe(z) for electrons is represented by

Ve(z) =
{

Eg in the barriers

Eg − 1E0
c in the well

(3)

whereEg is the band gap of GaAs and1E0
c is the conduction band discontinuity between

GaAs and In1−xGaxAs alloys. Here, the valence band maximum of GaAs is chosen as the
reference of the energy scale.

To describe the valence subbands which are more complex than those in the conduction
band because of the degeneracy, we use the Luttinger–Kohn Hamiltonian, taking into
account strain effects, i.e., the Pikus–Bir Hamiltonian [4]. When the interaction with the
spin-split state at the07 point is neglected, the Hamiltonian forms a 4× 4 matrix:

H =


P + Q R −S 0

R∗ P − Q 0 S

−S∗ 0 P − Q R

0 S∗ R∗ P + Q

 (4)

where

P ± Q = −1

2
(γ1 ± γ2)k

2 − 1

2
kz(γ1 ∓ γ2)kz

−Dd(εxx + εyy + εzz) ± 2

3
Du

[
εzz − 1

2
(εxx + εyy)

]
+ Vh(z) + Vex(z) (5)

R = −
√

3

2
[γ2(k

2
x − k2

y) − 2iγ3kxky ] −
[

Du√
3
(εyy − εxx) + i

2√
3
D′

uεxy

]
(6)

and

S = −i

√
3

2
(kx − iky)(γ3kz + kzγ3) + 2√

3
D′

u(εyz + iεzx). (7)

Here,γ1, γ2, andγ3 are the position-dependent Luttinger parameters determined by fitting
into the energy dispersions of bulk GaAs and In1−xGaxAs. The deformation potentials of
the valence band are defined asDd for a hydrostatic stress, andDu and D′

u for external
stresses along the [001] and [111] directions, respectively [6]. The products ofγ3 and kz

are symmetrized to satisfy the hermiticity of the system [7], and such a symmetrized form
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is important for calculating exact eigenvalues. In the absence of strain effects, the quantum
well is described by the hole confinement potentialVh(z):

Vh(z) =
{

0 in the barriers

1E0
v in the well

(8)

where1E0
v is the valence band discontinuity between GaAs and In1−xGaxAs alloys. Using

a unitary transformation, the 4× 4 Hamiltonian matrix can be reduced to two block-
diagonalized 2× 2 matrix forms [8]. To evaluate the eigenvalues of the resulting 2× 2
Hamiltonian, we use a basis-expansion method, where eigenfunctions are expanded in terms
of appropriate basis functions [9].

Figure 1. A schematic view of the potential profile
for the In0.2Ga0.8As/GaAs strained quantum well, where
the dotted lines represent the conduction band minimum
(CBM) and valence band maximum of bulk In0.2Ga0.8As.
The solid lines show the type-I and type-II quantum
wells for the heavy-hole (HH) and light-hole (LH) states,
respectively.

The band-offset parameterQ is set to 0.52 throughout this work, which is comparable
to the recently measured value [2], defined as

Q = 1Ec

1Ec + 1EHH
v

(9)

where1Ec and1EHH
v are the conduction and valence band discontinuities, respectively,

between In1−xGaxAs and GaAs, which include the energy shifts caused by strains at
interfaces. This value ofQ leads to a mixed type of quantum well structure where heavy
holes and electrons are confined in the In1−xGaxAs layer whereas light holes are in the GaAs
layer. The band profile of an In0.2Ga0.8As strained quantum well is plotted forQ = 0.52
in figure 1, with the use of other physical parameters given in [10].

For a well width of 80Å, we use 150 sine waves for a basis set to calculate the energy
levels at eachk-point. The calculated energies are accurate with a maximum error of 10−3

meV. After testings, we find that the 300̊A width of the GaAs layer is enough to remove the
effect of artificial buffer layers on the energy levels. Because an artificially square-shaped
potential is used, the formulations for the valence subbands in equation (4) do not satisfy
the flux-conservation condition at nonzerok points. However, our energy dispersions are
found to be in good agreement with previous calculations which take into account the flux-
conservation condition [10], as shown in figure 2. Three topmost valence subbands are
heavy-hole-like, and heavy-hole states occur exactly atk = 0. For nonzerok-vectors, in
general, the heavy-hole and light-hole states are hybridized due to the off-diagonal terms in
equation (4). Although the heavy-hole and light-hole states are localized in the In1−xGaxAs
and GaAs layers, respectively, their hybridization becomes significant ask increases. At a
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Figure 2. (a) The energy dispersions of the valence subbands (V1, V2, and V3) along the [100]
and [110] directions and (b) the density of states for the In0.2Ga0.8As/GaAs strained quantum
well. Circles denote the results from the phase-matching method [10].

large-k point, for example,k = (0.06, 0.06)2π/a0, the hybridized states are found to have
almost equal contributions from the heavy-hole and light-hole wave functions.

The calculated valence subbands along the [100] and [110] directions and the density
of states are plotted in figure 2. We find that the energy dispersions are slightly anisotropic
and this behaviour is caused by different values for the Luttinger parameters,γ2 = 3.34
and γ3 = 4.14, used for a Ga concentration ofx = 0.8. The anisotropic feature in the
energy spectrum is in fact expected because the energy dispersions of bulk In1−xGaxAs for
the heavy-hole (E−) and light-hole (E+) states are given by

E±(k) = −γ1k
2/2 ± γ2

√
k4 − 3(1 − γ 2

3 /γ 2
2 )k2

xk
2
y

for kz = 0. Because of the anisotropic and nonparabolic energy dispersions, the density of
states exhibits a feature deviating from that of a two-dimensional electron gas. In contrast
to the case of Al1−xGaxAs/GaAs quantum wells, sharp peaks in the density of states are not
found because an electron-like effective mass does not appear in the valence subbands [11].
The amplitudes of abrupt jumps in the density of states depend on the effective mass of
each subband atk = 0. In bulk In0.2Ga0.8As, the effective mass for the heavy-hole state is
m∗ = 1/(γ1 + 2γ2) = 0.062 along the lateral direction. However, this value in the quantum
well is increased due to the confinement effect of the GaAs barriers:m∗ = 0.078, 0.080,
0.088 for the first, second, and third topmost valence subbands, respectively.

Next we examine the electronic structure of quantum wells with aδ-doped layer. We
assume that donor impurities in theδ-doped layer are fully ionized with a concentration of
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ND. For aδ-doped layer located atzd from the centre of the well, an electron experiences
both the confinement potentialVe(z) (in equation (3)) and the Hartree potentialVH(z),
which is determined by Poisson’s equation:

d

dz
ε(z)

d

dz
VH (z) = 4πe2[ND δ(z − zd) − nel(z)] (10)

whereε(z) is the position-dependent dielectric constant. Here, the density distributionnel

of free carriers is given by

nel(z) =
∑

n

|ψn
el(z)|2Nn (11)

whereNn = (kBT m∗/πh̄2)ln[1 + exp(Ef − En
e )/kBT ] is the occupancy of the conduction

subbandn with an energyEn
e at a temperatureT , Ef is the Fermi energy, andm∗ =

1/〈ψn|1/m∗(z)|ψn〉. Then, the solution of equation (10) can be written as

VH(z) = 4πe2
∫ z

−∞

1

ε(s)

∫ s

−∞
[ND δ(z′ − zd) − nel(z

′)] dz′ ds. (12)

Since the Hartree potential depends on the wave function, the eigenvalues are solved for
self-consistently.

Figure 3. In the In1−xGaxAs/GaAs quantum well
with a δ-doped layer atz = 0, various transition
energies for transitions between the valence and
conduction subbands plotted as functions of the doping
concentrationnD .

For δ-doped quantum wells withzd = 0 and various doping concentrations, we examine
the electronic structure atT = 0 K. The energy dispersions and the densities of states are
found to be similar to those for an undoped quantum well, except for a lowering of the
subband energies. Since the presence of aδ-doped layer gives rise to an attractive potential,
the subband energies move down for both the conduction and valence bands. Compared
with the conduction subbands, since the valence band states are more localized due to large
effective masses, these subband energies are decreased more rapidly by the sharp potential
in theδ-doped layer. As a result of this, the transition energy between the first valence (V1)
and conduction (C1) subbands is found to increase very slowly with doping concentration,
as shown in figure 3. The same argument is also used for the transition between the second
valence (V2) and conduction (C2) states, which exhibit more increasing behaviour. Since
the wave functions of the V2 and C2 subbands have a node atz = 0, i.e., in theδ-doped
layer, these states are less affected byδ-doping, as compared to the V1 and C1 states
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which have maximum densities atz = 0. Thus, the V2–C1 transition energy decreases with
increasing doping concentration, while the V1–C2 transition energy increases.

As the well width increases, the V1–C1 transition energy is found to decrease because
of the weakening of the confinement. In the In1−xGaxAs quantum well, the compressive
strain caused by the lattice mismatch enhances its band gap by

1Eg = (1.62+ 2.30x − 2.42x2 − 1.50x3)/(8.33+ 3.55x).

However, as the Ga concentration (x) decreases, since the band gap of In1−xGaxAs decreases
more rapidly, as described by the relation,E0

g = 0.32 + 0.7x + 0.4x2 (eV), the V1–C1
transition energy decreases with decreasingx. We also note that the effective masses for
various subband states exhibit decreasing behaviour as the well width increases, because
electrons become more localized in the In1−xGaxAs quantum well.

Figure 4. (a) The energy dispersions of valence subbands (V1, V2, and V3) along the [100]
and [110] directions and (b) the density of states for the In0.2Ga0.8As/GaAs quantum well with
a δ-doped layer at the centre of the well and a carrier density ofnD = 1.5 × 1012 cm−2.

If the δ-doped layer is positioned away from the centre of the well, the quantum well
system loses the inversion symmetry; thus, the degenerate valence subbands atk 6= 0
are split, according to equation (4). For aδ-doped layer located atzd = 20 Å with
nD = 1.5 × 1012 cm−2, the energy dispersions of the valence subbands and the density
of states are plotted in figure 4. Although the position of theδ-doped layer does not
significantly change the density of states, the relative positions of the energy levels are
strongly affected. As the doped layer moves far from the centre of the well, the V1–C1
transition energy decreases, as shown in figure 5. In this case, electrons in the conduction
band are localized in theδ-doped layer whereas holes in the valence band are outside theδ-
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Figure 5. For theδ-doped quantum well with a carrier
density ofnD = 1.5 × 1012 cm−2, the energies of the
transitions between various subband states as functions
of zd .

doped region; thus, the energy difference and the overlap of the two wave functions become
smaller. This behaviour is similar to the quantum confined Stark effect that appeared in
the presence of an external electric field [12]. The variations of the transition energies for
transitions between various subband states with varying position of theδ-doped layer are
also shown in figure 5. Other than for the transition between the C1 and V2 states, it is found
that the transition energies decrease slowly with increasingzd . For nD = 1.5 × 1012 cm−2,
the Fermi level is found to lie between the first and second conduction bands atzd = 0. As
zd increases, the Fermi level approaches to the second conduction subband, and eventually
it crosses the second subband at approximatelyzd = 27 Å. Then, the transition energies
are strongly affected by the Fermi-level crossing, exhibiting the abruptly decreasing rate, as
shown in figure 5.

In conclusion we have studied the electronic structure of In1−xGaxAs/GaAs strained
quantum wells using a numerical diagonalizing scheme. Including the strain effect, the
energy levels are calculated by solving the Pikus–Bir Hamiltonian exactly, and good
agreements with other theoretical results are found. We find that introducing aδ-doped
layer in In1−xGaxAs quantum wells increases the energy of the transition from the first
valence subband to the conduction states, while the density of states and the effective mass
for each subband are little affected.
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